Lecture: First Order Logic

Pros and cons of propositional logic

© Propositional logic is declarative
© Propositional logic allows partial/disjunctive/negated information

- (unlike most data structures and databases)
(9) Propositional logic is compositional:
- meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
© Meaning in propositional logic is context-independent
- (unlike natural language, where meaning depends on context)
© Propositional logic has very limited expressive power
- (unlike natural language)
- E.g., cannot say "pits cause breezes in adjacent squares"
- except by writing one sentence for each square

First-order logic

\square Whereas propositional logic assumes the world contains facts,
[first-order logic (like natural language) assumes the world contains
— Objects: people, houses, numbers, colors, baseball games, wars, ...

- Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
- Functions: father of, best friend, one more than, plus, ...

Limitations of propositional logic

: Propositional logic has limited expressive power
■ unlike natural language
-E.g., cannot say "pits cause breezes in adjacent squares"
Dexcept by writing one sentence for each square

Example

- For Example

Every dog drinks water
Tommy is a dog
Brain can concludes:
Tommy drinks water

Example

— For Propositional Logic

P Every Dog drinks water
Q Tommy is a Dog
R Tommy drinks water
— But you can't go inside P \& Q statement so by PL you can't conclude.

Example

- For Propositional Logic

P Every Dog drinks water
Q Tommy is a Dog
R Tommy drinks water
(y you can't go inside P \& Q statement so by PL you can't conclude.
— But You can solve by First Order Logic

FOL Syntax

- Every FOL is divided by two parts
- Subject
- Predicate
(Every FOL is divided by two parts
- Subject
- Predicate
X is an integer.
Subject: x
Predicate: is an integer

Pinky is a cat.
Subject: Pinky
Predicate: is a cat.

FOL Syntax

(A set of predicate symbols $\mathrm{P}=\{\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \ldots\}$. We also use the symbols $\{P, Q, R, \ldots \mid$. More commonly we use words like "Man", "Mortal", "GreaterThan". Each Symbol has an arity associated with it.
D. A set of function symbols $\mathrm{F}=\{\mathrm{f} 1, \mathrm{f} 2, \mathrm{f} 3, \ldots\}$. We commonly used the symbol $\{f, g, h, \ldots$.$\} or words like "Successor" and "sum". Each function$ symbol has an aity that denotes the number of argument it takes.
(A set of constant symbols $C=\{c 1, c 2, c 3, \ldots\}$. We often used symbols like " 0 " or "Newton" or "Kolkata" that are meaningful to us.

The three sets define a language $L(P, F, C)$

Shorthand notation

Pinky is a cat.
Subject: Pinky
Predicate: is a cat.
$\operatorname{cat}(x)=x$ is a cat
cat(Pinky)
$\operatorname{lnt}(x)=x$ is an integer
"Every man drinks coffee"

"Some cats are intelligent"

First-Order Logic

- Propositional logic assumes that the world contains facts.
- First-order logic (like natural language) assumes the world Contains
— Objects: people, houses, numbers, colors, baseball games, wars, ...
- Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
- Functions: father of, best friend, one more than, plus, ...

Logics in General

\square Ontological Commitment:

- What exists in the world - TRUTH
- PL : facts hold or do not hold.
- FOL : objects with relations between them that hold or do not hold

Epistemological Commitment:

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $\in[0,1]$
Fuzzy logic	degree of truth $\in[0,1]$	known interval value

Syntax of FOL: Basic elements

- Constant Symbols:
- Stand for objects
- e.g., KingJohn, 2, UCI,...
- Predicate Symbols:
- Stand for relations
- E.g., Brother(Richard, John), greater_than(3,2)...
] Function Symbols:
- Stand for functions
- E.g., Sqrt(3), LeftLegOf(John),...

Syntax of FOL: Basic elements

- Constants KingJohn, 2, UCI,...
[Predicates Brother, $>, \ldots$.
- Functions Sqrt, LeftLegOf,...

1 Variables x, y, a, b, \ldots
\square Connectives $\neg, \Rightarrow, \wedge, \vee, \Leftrightarrow$

- Equality =
\square Quantifiers \forall, \exists

Universal Quantification

- \forall means "for all"
- Allows us to make statements about all objects that have certain properties
(Can now state general rules:

```
\forallx King(x) }->\mathrm{ Person(x)
\forallx Person (x) -> HasHead(x) "Every person has a head."
```

Note that:
$\forall \mathbf{x K i n g}(\mathbf{x})$ Р Person($\mathbf{x})$ is not correct!
This would imply that all objects x are Kings and are People/Person
$\forall x \operatorname{King}(\mathbf{x}) \rightarrow$ Person (\mathbf{x}) is the correct way to say

Existential Quantification ヨ

$\square \exists \times$ means "there exists an x such that...." (at least one object x)
— Allows us to make statements about some object without naming it
(Examples:
$\exists \mathrm{x}$ King (x)
$\exists x$ Lives_in(John, Castle(x))
\exists i Integer(i) \wedge GreaterThan $(\mathrm{i}, 0)$
"Some object is a king."
"John lives in somebody's castle."
"Some integer is greater than zero."

Note that:
\wedge is the natural connective to use with \bar{Z}
(And \rightarrow is the natural connective to use with ∇)

Nested Quantifiers

Defintion: Two quantifiers are said to be nested if one is within the scope of the other. For example: $\forall x \exists y Q(x, y)$
\exists is within the scope of \forall
Note: Anything within a scope of the quantifier can be thought of as a propositional function.

$$
\begin{gathered}
\forall x \exists y \mathrm{Q}(x, y) \\
\downarrow \\
\mathrm{P}(\mathrm{x})
\end{gathered} \Rightarrow \forall x \mathrm{P}(x)
$$

Different combinations of Nested Quantifiers

$$
\begin{aligned}
& \text { Order of quantifiers } \\
& \text { doesn't matter }
\end{aligned} \leftarrow\left[\begin{array}{l}
\forall x \forall y Q(x, y) \\
\forall x \exists y Q(x, y) \\
\exists y \forall x Q(x, y) \\
\exists x \exists y Q(x, y)
\end{array} \rightarrow \begin{array}{l}
\text { Order of quantifiers } \\
\text { does matter } \\
\text { lw }
\end{array}\right.
$$

"Some cats are intelligent"
$\exists x[\operatorname{cat}(x) \wedge I(x)]$

"Some cats are intelligent"

- Proof that correct or wrong?

$$
\exists x[\operatorname{cat}(x) \square I(x)]
$$

"Some cats are intelligent"

(From table: False)

$$
\exists x[\operatorname{cat}(x) \square \mathrm{I}(\mathrm{x})]
$$

) \square	
	Alias	Animal	Intelligent
	al	cat	No
	a2	cat	No
	a3	dog	Yes

$\underbrace{\exists a 1[\operatorname{cat}(a 1) \square I(a 1)]} \vee \underbrace{\exists a 2[\operatorname{cat}(a 2) \square I(a 2)]}_{\text {False } \square \text { True }} \vee \exists \underbrace{\exists a 3[c a t(a 3) \square I(a 3)]}$

$\exists x[\operatorname{cat}(x) \square I(x)]$
False
False

P	Q	$P \rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

\qquad \downarrow This is true which is contradic \dagger of the statement

True

"Some cats are intelligent"

\square Solution:

$$
\exists x[\cot (x) \wedge I(x)]
$$

Can you proof again?

"Some cats are intelligent"

(From table: False)

ヨx[cat(x) \wedge I(x)]

Alias	Animal	Intelligent
al	cat	No
a2	cat	No
a3	dog	Yes

P	Q	$P \rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

$\exists x[\operatorname{cat}(x) \wedge I(x)]$
This is false which is
Same as
the statement
False

"Every student in this class has visited Africa or

 America"(1) Student(x): x is student in this class
$\square \operatorname{vaf}(x): x$ has visited Africa
I $\operatorname{vam}(x)$: x has visited America

$$
\forall x[\text { student }(x) \square \operatorname{vaf}(x) v \operatorname{vam}(x]]
$$

"Some prime number is even number"

— prime (x) : x is prime no

- Even $(x)=x$ is even no

$\exists x[p r i m e(x) \wedge \operatorname{even}(x)]$

"Rajiv likes Priya"

Likes(Rajiv, Priya)

"Rajiv likes Every one"

[Proof?

"Rajiv likes Everyone"

Rajiv likes xl
\wedge
Rajiv likes x2
\wedge
Rajiv likes x3

Likes(Rajiv, x1) ^ Likes(Rajiv, x2) ^ Likes(Rajiv, x3)

$$
\forall x \text { Likes(Rajiv, x) }
$$

"Everyone likes everyone"

\square Proof?

"Everyone likes everyone"

Rajiv likes everyone \wedge

Priya likes everyone ^

Everyone likes Rajiv
$\forall x$ Likes(Rajiv, x)
$\forall x$ Likes(Priya, x)
$\forall y$ Likes(y, Rajiv)

$\forall y \forall x[$ Likes $(y, x)]$

"Someone likes someone"

[Proof?
"Someone likes someone"

Rajiv likes someone
$\exists y$ likes(Rajiv, y)
$\exists x \exists y$ Likes (x, y)

"Someone likes Everyone"

[Proof?

"Someone likes Everyone"

Rajiv likes Everyone

$\forall x$ likes(Rajiv, x)
$\exists y[\forall \times \operatorname{Likes}(y, x)]$

"Everyone likes Someone"

[Proof?

"Everyone likes Someone"

Rajiv likes someone \exists x Likes(Rajiv, \mathbf{x})]
$\forall y[\exists x$ Likes(y, $\mathbf{x})]$

"Everyone is liked by someone"

Rajiv is liked by someone \exists y Likes(y, Rajiv)]

$$
\forall x \exists y \operatorname{Likes}(y, x)
$$

"Someone is liked by everyone"

- Proof?

"Someone is liked by everyone"

— Rajiv is liked by everyone
$\forall x$ Likes(x, Rajiv)]
$\exists y \forall x \operatorname{Likes}(x, y)]$

"Nobody likes everyone"

Rajiv does not like everyone
$\neg \forall \times$ Likes(Rajiv, $x)$
$\quad \ldots$.
$\forall y[\neg \forall x \operatorname{Likes}(y, x)]$

GATE 2009

Which one of the following is the most appropriate logical formula to represent the statement? "Gold and silver ornaments are precious".
The following notations are used:
$\mathrm{G}(\mathrm{x})$: x is a gold ornament
$S(x)$: x is a silver ornament
$P(x)$: x is precious
(A) $\forall x(P(x) \rightarrow(G(x) \wedge S(x)))$
(B) $\forall x((G(x) \wedge S(x)) \rightarrow P(x))$
(C) $\exists x((G(x) \wedge S(x)) \rightarrow P(x))$
(D) $\forall x((G(x) \vee S(x)) \rightarrow P(x))$

 .

Abstract

